Sains Malaysiana 52(7)(2023):
2115-2126
http://doi.org/10.17576/jsm-2023-5207-17
Mechanical
Characteristics of Developed Brick from Drinking Water Sludge under Different
Firing Temperatures and Rice Husk Ash Contents
(Pencirian Mekanikal Bata yang Dibangunkan daripada Air Minuman Enapcemar di Bawah Suhu Pembakaran Berbeza dan Kandungan Abu Sekam Padi)
ZULFAHMI ALI RAHMAN*, HAFIS NAZARAH, WAN MOHD RAZI IDRIS
& TUKIMAT LIHAN
Department of Earth Science and Environment, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 13 February 2023/Accepted: 10 July 2023
Abstract
There
is a considerable interest in making alternative bricks using wastes. Firing
temperature has been significantly improved the mechanical qualities of bricks.
The aim of this study was to investigate into the impact of firing temperature
and rice husk ash content on the mechanical properties of drinking water sludge
bricks (DWS). Two types of bricks were
produced; bricks made of 100% DWS (DWS100) and bricks with 80% DWS and 20% RHA
(DWS80). These samples were subjected to different thermal variations of 300 °C
and 700 °C for three hours. The unfired brick samples were also prepared for
reference. The volume changes of the
DWS100 bricks increased as the firing temperature climbed up to 500 °C, before
dropped at 700 °C. A similar behaviour
was also exhibited by DWS80 bricks, however it shrunk at earlier temperature of
500 °C. At 500 °C and 700 °C, the density of bricks decreased dramatically,
with DWS80 bricks consistently being lesser than DWS100 bricks. The water
absorption of DWS80 brick began to decrease at 500 °C, a lower temperature than
that of DWS100, as the firing temperature climbed. RHA-added bricks (DWS80)
were anticipated to absorb more water than DWS100 bricks, but this did not
occur. This presumably induced by the constriction of clay mineral structure
rather than organic matter removal at high temperature per se. The compressive
strength increased with the increase in temperature. It can be inferred that
RHA can decrease the compressive strength of RHA-added bricks, despite the fact
that a higher fire temperature significantly increased their strength.
Keywords: Brick; compressive strength; drinking
water sludge; rice husk ash
Abstrak
Terdapat minat yang besar dalam membuat bata alternatif menggunakan bahan buangan. Suhu pembakaran telah meningkatkan kualiti mekanikal batu bata dengan ketara. Matlamat penyelidikan ini adalah untuk mengkaji kesan suhu pembakaran dan kandungan abu sekam padi terhadap sifat mekanikal bata air minuman enapcemar (DWS). Dua jenis bata telah dihasilkan; bata diperbuat daripada 100% DWS
(DWS100) dan bata dengan 80% DWS dan 20% RHA
(DWS80). Sampel ini tertakluk kepada variasi terma berbeza 300 °C dan 700 °C selama tiga jam. Sampel bata yang tidak dibakar juga disediakan untuk rujukan. Perubahan volum bata DWS100 meningkat apabila suhu pembakaran meningkat sehingga 500 °C, sebelum turun pada 700 °C. Tingkah laku serupa juga ditunjukkan oleh bata DWS80, namun ia mengecut pada suhu awal 500 °C. Pada 500 °C dan 700 °C, ketumpatan bata menurun secara mendadak dengan bata DWS80 secara tekal kurang daripada bata DWS100. Penyerapan air bata DWS80 mula berkurangan pada 500 °C, suhu yang lebih rendah daripada DWS100, apabila suhu pembakaran meningkat. Bata RHA-tambah (DWS80) dijangka menyerap lebih banyak air daripada bata DWS100, tetapi ia tidak berlaku. Ini mungkin disebabkan oleh penyempitan struktur mineral tanah liat dan bukannya penyingkiran bahan organik pada suhu tinggi per se. Kekuatan mampatan meningkat dengan peningkatan suhu. Ia boleh disimpulkan bahawa RHA boleh mengurangkan kekuatan mampatan bata RHA-tambah, walaupun pada hakikatnya suhu api yang lebih tinggi meningkatkan kekuatannya dengan ketara.
Kata kunci: Abu sekam padi; air minuman enapcemar; bata; kekuatan mampatan
REFERENCES
Ali Rahman, Z., Othman, A.M., Idris, W.M.R. & Lihan, T. 2021. Kesan suhu dan bahan tambah abu terbang terhadap pencirian mekanik bata daripada sisa rawatan air mentah. Sains Malaysiana 50(6):
1563-1575. http://dx.doi.org/10.17576/jsm-2021-5006-05
Ali Rahman, Z., Mohd Saleh, N.M., Idris, W.M.R. &
Lihan, T. 2019. Thermal effect on mechanical characteristics of
drinking water sludge brick incorporated with rice husk ash. Sains Malaysiana 48(11): 2541-2549. http://dx.doi.org/10.17576/jsm-2019-4811-24
Ali Rahman, Z., Mat Noradin, M., Abdul Rahim, S., Idris,
W.M. R. & Lihan, T. 2015. Some mechanical characteristics of brick developed
from drinking water sludge (DWS) and admixture of rice husk ask (RHA). Proceeds.
National Geoscience Conference 2015. Perdana Hotel,
Kota Bharu Kelantan, 31 July - 1 August 2015. pp.
166-168.
Al-Tersawy, S.H. & El-Sergany, F.A. 2016. Reuse of water treatment plant sludge
and rice husk ash in concrete production. International Journal of
Engineering Science & Research Technology 5(12): 138-152. http://dx.doi.org/10.5281/zenodo.192524drinking wat
Amin, M.N., Hissan, S., Shahzada, K., Khan, K. &
Bibi, T. 2019. Pozzolanic reactivity and the influence of
rice husk ash on early-age autogenous shrinkage of concrete. Frontier Materials 6: 150. https://doi.org/10.3389/fmats.2019.00150
Akinshipe, O. & Kornellus, G.
2017. Chemical and thermodynamic processes in clay brick firing technologies
and associated atmospheric emissions metrics - A Review. Journal of
Pollution Effects & Control 5(2): 1-12.
Anyokora, N.V., Ajinomoh,
C.S., Ahmed, A.S., Mohammed Dabo, I.A., Ibrahim, J.
& Anton, J.B. 2012. Microstructural and chemical characterization of water
works sludge for resource utilization. WEEJS
International Journal of Arts and Combined Sciences 3(1): 1-5.
AS/NZS 4456.8: 1997. Determining Moisture Content
and Dry Density. Standard Australia and New Zealand.
AS/NZS 4456.17:2003 Determining Initial Rate of
Absorption (Suction). Standards Australia and New Zealand.
Bhupinder, S. 2018. 13 - Rice husk ash. In Waste and
Supplementary Cementitious Materials in Concrete. Characterisation,
Properties and Applications, edited by Siddique, R. & Cachim, P. Woodhead Publishing
Series in Civil and Structural Engineering. p. 532. https://doi.org/10.1016/C2016-0-04037-8
British Standards Institution. 1985. British
Standard Specification for Clay Bricks. London, BS 3921.
BS EN 772-1. 2011. Methods of Test for Masonry
Units. Determination of Compressive Strength. (London: British Standard).
pp. 1-18.
Chen, Y., Zhang, Y., Chen, T., Zhao, Y. & Bao, S. 2011. Preparation of eco-friendly
construction bricks from hematite tailings. Construction Building Materials 25: 2107-2111. http://dx.doi.10.1016/j.conbuildmat.2010.11.025
Damanhuri, A.A.M., Lubis, A.M.H.S.,
Hariri, A., Herawan, S.G., Roslan,
M.H.I. & Hussin, M.S.F. 2020. Mechanical properties of
rice husk ash (RHA) brick as partial replacement of clay. The 2nd Joint International Conference on Emerging Computing Technology and Sports
(JICETS). Journal of Physics: Conference
Series. IOP Publishing. https://doi.org/10.1088/1742-6596/1529/4/042034
David, R. 1998. Handbook to Life in Ancient Egypt.
Oxford: University Press.
Demis, S., Tapali, J.G. & Papadakis, V.G. 2015. Plant design and economics of rice
husk ash exploitation as a pozzolanic material. Waste Biomass Valorization 6(5):
843-853. https://doi.org/10.1007/s12649-015-9412-1
Figaredo, A.T. & Dhanya, M.
2018. Development of sustainable brick materials incorporating agro-wastes: An
overview. International Research Journal
of Engineering and Technology 5(11): 721-726.
Hegazy, B.E.E., Fouad, H.A. & Hassanain,
A.M. 2012. Incorporation of water sludge, silica fume, and rice husk ash in
brick making. Advances in Environmental
Research 1: 83-96.
Heniegal, A.M., Ramadan, M.A., Naguib,
A. & Agwa, I.S. 2020. Study on properties of clay
brick incorporating sludge of water treatment plant and agriculture waste. Case Studies in Construction Materials 13: 1-13. https://doi.org/10.1016/j.cscm.2020.e00397
Herreño, L.C.F., Solano, D.M.V., Sarabia,
K.D.R., Pérez, J.O.C. & Quintero, A.A.M. 2019. Drinking water treatment
sludge as a partial substitute for clays in non-structural brick production.
The 6th International Meeting of Technological Innovation (6th IMTI). Journal of Physics: Conference Series.
IOP Publishing. https://doi.org/10.1088/1742-6596/1409/1/012013
Huq, R.S. & Chowdhury, F. 2018. Use of rice husk ash
as substitute to make clay bricks. International Journal of
Innovative Research in Science, Engineering and Technology 7(10):
10236-10243.
Janbuala, S. & Wasanapiarnpong,
T. 2015. Effect of rice husk and rice husk ash on properties of lightweight
clay bricks. Key Engineering Materials 659: 74-79. http://dx.doi.10.4028/www.scientific.net/KEM.659.74
Khan, M.N.N., Jamil, M., Kaish,
A.B.M.A. & Zain, M.F.M. 2014. An overview on manufacturing of rice husk ash
as supplementary cementitious material. Australian Journal of Basic and
Applied Sciences 8(19): 176-181.
Khoo, Y.C., Johari, I. & Ahmad, Z.A. 2013. Influence
of rice husk ash on the engineering properties of fired clay bricks. Advanced Materials Research 795: 14-18.
Kumar, L.V. & Vignesh,
B.J. 2017. Experimental investigation on replacement of bagasse ash in bricks. International Journal of Innovative Research
in Science, Engineering and Technology 6(5): 8303-8309.
Krishnan, P., Jewaratnam, J.
& Jewaratnam, J. 2017. Recovery of water
treatment residue into clay bricks. Chemical Engineering Transaction 56:
1837-1842. http://doi.10.3303/CET1756307
Lamba, P., Kaur, D.P., Raj, S. & Sorout,
J. 2022. Recycling/reuse
of plastic waste as construction material for sustainable
development: A review. Environmental
Science and Pollution Research 29: 86156-86179.
Ling, I.H. & Teo, D.C.L.
2013. EPS RHA concrete bricks - A new building material. Jordan Journal of
Civil Engineering 7(4): 361-370.
Liu, Y., Zhuge, Y., Chow,
C.W., Keegan, A., Li, D., Pham, P.N., Huang, J. & Siddique, R. 2020.
Properties and microstructure of concrete blocks incorporating drinking water
treatment sludge exposed to early-age carbonation curing. Journal of Cleaner
Production 261: 121257. https://doi.org/10.1016/j.jclepro.2020.121257
Mageed, A.A., Rizk, S.A. &
Abu-Ali, H. 2011. Utilization of water treatment plants sludge ash in brick
making. Journal of Engineering Sciences 39(1): 195-206.
McGinnis, M.J., Davis, M., de la Rosa, A., Weldon,
B.D. & Kurama, Y.C. 2017. Quantified
sustainability of recycled concrete aggregates. Magazine of Concrete
Research 69(23): 1203-1211. https://doi.org/10.1680/jmacr.16.00338
Minh, L.T. & Tram, N.X.T. 2017. Utilization of
rice husk ash as partial replacement with cement for production of concrete
brick. MATEC Web of Conferences 97: 01121. http://dx.doi.101.1051/matecconf/20179701121
Mohan, N.V., Satyanarayama,
P.V.V. & Rao, K.S. 2012. Performance of rice husk ash bricks. International
Journal of Engineering Research and Applications 2(5): 1906-1910.
MS 76. 1972. Specification for Bricks and Blocks of
Fired Brick Earth, Clay or Shale (Selangor: Malaysian Standard). pp 1-74.
Perera, B.V.A., Madushanka,
K.G.S., Subashi De Silva, G.H.M.J. & De Silva,
G.S.Y. 2015. Effect of rice husk ash on structural properties of fired clay
brick. 6th International Conference on Structural Engineering and
Construction Management. Kandy, Sri Lanka, 11th-13th December.
Ramadhan, M.O., Fouad, H.A. & Hassanain,
A.M. 2008. Reuse of water treatment plant sludge in brick manufacturing. Journal
of Applied Sciences Research 4(10): 1223-1229.
Saleh, A.M., Rahmat, M.T., Mohd Yusoff, F.N. & Eddirizal, N.E. 2014. Utilization of palm oil fuel ash and
rice husks in unfired bricks for sustainable construction materials
development. MATEC Web of Conferences 15: 01032. http://dx.doi.10.1051/matecconf/20141501032
Salehi, M.H., Hashemi Beni, O., Beigi Harchegani, H., Esfandiarpour Borujeni, I. & Motaghian,
H.R. 2011. Refining soil organic matter determination by loss-on-ignition. Pedosphere 21(4): 473-482. http://dx.doi.org/10.1016/S1002-0160(11)60149-5
Shaqour, E.N., Alela, A.H.A. & Rsheed, A.A. 2021. Improved fired clay brick compressive
strength by recycling wastes of blacksmiths’ workshops. Journal of Engineering and Applied Science 68(5): 1-14.
Sinuligga, K., Sirait, M. & Siregar, A.M. 2018. Addition of nano particles effect of rice husk ash as a mixture on the bricks strength. The 8th International Conference on Theoretical and Applied. Journal
of Physics: Conference Series. IOP Publishing. https://doi/10.1088/1742-6596/1120/1/012090
Subashi De Silva, G.H.M.J. & Perera,
B.V.A. 2018. Effect of waste rice husk ash (RHA) on structural, thermal and
acoustic properties of fired clay bricks.
Journal of Building Engineering 18: 252-259.
Sultana, M.S., Hossain, M.I., Rahman, M.A. & Khan,
M.H. 2014. Influence of rice husk ash and fly ash on properties of red clay. Journal of Scientific Research 6(3):
421-430.
Sutas, J., Mana, A. & Pitak,
L. 2012. Effect of rice husk and rice husk ash to properties of bricks. Procedia
Engineering 32: 1061-1067. http://dx.doi.org/10.1016/j.proeng.2012.02.055
Tantawy, M.A. & Ramadan, S.A.M. 2017. Middle Eocene clay from Goset Abu Khashier: Geological assessment and utilization
with drinking water treatment sludge in brick manufacture. Applied Clay Science 138: 114-124. http://dx.doi.org/10.1016/j.clay.2017.01.005
Toghroli, A., Shariati,
M. & Sajedi, F. 2018. A review on pavement porous
concrete using recycled waste materials. Smart
Structure and Systems 22: 433-440. https://dx.doi.org/10.12989/SSS.2018. 22.4.433
Torres, P., Hernandez, D.
& Paredes, D. 2012. Productive use of sludge from a drinking water
treatment plant for manufacturing ceramic bricks. Revista Ingeniería de Construcción,
27(3): 145-154. http://dx.doi.org/10.4067/S0718-50732012000300003
Weng, C.H., Lin, D.F. & Chiang, P.C. 2003. Utilization
of sludge as brick materials. Advances in Environmental Research 7(3):
679-685.
Xu, W., Lo, T.Y. & Memon,
S.A. 2012. Microstructure and reactivity of rich husk ash. Construction and
Building Materials 29: 541-547.
Zhang, L. 2013. Production of bricks from waste
materials - A review. Construction and Building Materials 47: 643-655. http://dx.doi.10.1016/j.conbuildmat.2013.05.043
Zou, Y. & Yang, T. 2019. Rice husk ash and their
applications. In Rice Bran and Rice Bran Oil. Chemistry, Processing and
Utilization, edited by Cheong, L.Z. & Xu, X. London: Elsevier Inc. pp.
207-246.
*Corresponding author; email: zarah1970@ukm.edu.my
|